Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
2.
Front Immunol ; 13: 1010140, 2022.
Article in English | MEDLINE | ID: covidwho-2121437

ABSTRACT

The emerging SARS-CoV-2 virus has affected the entire world with over 600 million confirmed cases and 6.5 million deaths as of September 2022. Since the beginning of the pandemic, several variants of SARS-CoV-2 have emerged, with different infectivity and virulence. Several studies suggest an important role of neutrophils in SARS-Cov-2 infection severity, but data about direct activation of neutrophils by the virus is scarce. Here, we studied the in vitro activation of human neutrophils by SARS-CoV-2 variants of concern (VOCs). In our work, we show that upon stimulation with SARS-Cov-2 infectious particles, human healthy resting neutrophils upregulate activation markers, degranulate IL-8, produce Reactive Oxygen Species and release Neutrophil Extracellular Traps. Neutrophil activation was dependent on TLR7/8 and IRF3/STING. We then compared the activation potential of neutrophils by SARS-CoV-2 variants and showed a significantly increased activation by the Delta variant and a decreased activation by the Omicron variant as compared to the initial strain. In this study, we demonstrate that the SARS-Cov-2 virus can directly activate neutrophils in COVID-19 and that the different VOCs had differences in neutrophil activation intensity that mirror the differences of clinical severity. These data highlight the need to address neutrophil-virus interactions as a potential target for therapeutic intervention in SARS-CoV-2 infection.


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Neutrophils
3.
Frontiers in allergy ; 3, 2022.
Article in English | EuropePMC | ID: covidwho-2073516

ABSTRACT

Soon after the release of the new anti-COVID mRNA vaccines, reports came in from the US and the UK of anaphylactic reactions. Fueled by the necessary caution toward these new vaccine platforms, these reports had a great impact and were largely commented upon in the scientific literature and global media. The current estimated frequency is of 5 cases per million doses. Very little biological data are presented in the literature to support the anaphylaxis diagnosis in these patients in addition to skin tests. Allergic reactions to vaccines are rare and mostly due to vaccine excipient. Therefore, the poly-ethylene-glycol (PEG) present in both mRNA formulation, and already known to be immunogenic, was soon suspected to be the potential culprit. Several hypersensitivity mechanisms to PEG or to other vaccine components can be suspected, even if the classical IgE-dependent anaphylaxis seems to be one of the most plausible candidates. In the early 2022, the international guidelines recommended to perform skin prick tests and basophil activation tests (BAT) in people experiencing allergic reaction to the first dose of COVID-19 vaccine or with a history of PEG allergy. The aim of this review is to discuss the main potential mechanisms of immediate allergy to COVID19 vaccines based on published data, together with the various techniques used to confirm or not sensitization to one component.

4.
Sci Rep ; 12(1): 638, 2022 01 12.
Article in English | MEDLINE | ID: covidwho-1900549

ABSTRACT

COVID-19 can cause acute respiratory distress syndrome, leading to death in many individuals. Evidence of a deleterious role of the innate immune system is accumulating, but the precise mechanisms involved remain unclear. In this study, we investigated the links between circulating innate phagocytes and severity in COVID-19 patients. We performed in-depth phenotyping of neutrophil and monocyte subpopulations and measured soluble activation markers in plasma. Additionally, anti-microbial functions (phagocytosis, oxidative burst, and NETosis) were evaluated on fresh cells from patients. Neutrophils and monocytes had a strikingly disturbed phenotype, and elevated concentrations of activation markers (calprotectin, myeloperoxidase, and neutrophil extracellular traps) were measured in plasma. Critical patients had increased CD13low immature neutrophils, LOX-1 + and CCR5 + immunosuppressive neutrophils, and HLA-DRlow downregulated monocytes. Markers of immature and immunosuppressive neutrophils were strongly associated with severity. Moreover, neutrophils and monocytes of critical patients had impaired antimicrobial functions, which correlated with organ dysfunction, severe infections, and mortality. Together, our results strongly argue in favor of a pivotal role of innate immunity in COVID-19 severe infections and pleads for targeted therapeutic options.


Subject(s)
COVID-19/immunology , Immunity, Innate , Immunocompromised Host , Adult , Aged , Female , Humans , Male , Middle Aged , Monocytes/immunology , Neutrophils/immunology , Phagocytes/immunology , Prognosis , Severity of Illness Index , Young Adult
6.
Biomedicines ; 10(4)2022 Mar 23.
Article in English | MEDLINE | ID: covidwho-1834700

ABSTRACT

High-density lipoproteins (HDLs) have multiple endothelioprotective properties. During SARS-CoV-2 infection, HDL-cholesterol (HDL-C) concentration is markedly reduced, and studies have described severe impairment of the functionality of HDL particles. Here, we report a multi-omic investigation of the first administration of recombinant HDL (rHDL) particles in a severe COVID-19 patient in an intensive care unit. Plasma ApoA1 increased and HDL-C decreased after each recombinant HDL injection, suggesting that these particles were functional in terms of reverse cholesterol transport. The proportion of large HDL particles also increased after injection of recombinant HDL. Shotgun proteomics performed on HDLs isolated by ultracentrifugation indicated that ApoA1 was more abundant after injections whereas most of the pro-inflammatory proteins identified were less abundant. Assessment of Serum amyloid A-1, inflammatory markers, and cytokines showed a significant decrease for most of them during recombinant HDL infusion. Our results suggest that recombinant HDL infusion is feasible and a potential therapeutic strategy to be explored in COVID-19 patients.

7.
Biomedicines ; 10(4):754, 2022.
Article in English | MDPI | ID: covidwho-1762667

ABSTRACT

High-density lipoproteins (HDLs) have multiple endothelioprotective properties. During SARS-CoV-2 infection, HDL-cholesterol (HDL-C) concentration is markedly reduced, and studies have described severe impairment of the functionality of HDL particles. Here, we report a multi-omic investigation of the first administration of recombinant HDL (rHDL) particles in a severe COVID-19 patient in an intensive care unit. Plasma ApoA1 increased and HDL-C decreased after each recombinant HDL injection, suggesting that these particles were functional in terms of reverse cholesterol transport. The proportion of large HDL particles also increased after injection of recombinant HDL. Shotgun proteomics performed on HDLs isolated by ultracentrifugation indicated that ApoA1 was more abundant after injections whereas most of the pro-inflammatory proteins identified were less abundant. Assessment of Serum amyloid A-1, inflammatory markers, and cytokines showed a significant decrease for most of them during recombinant HDL infusion. Our results suggest that recombinant HDL infusion is feasible and a potential therapeutic strategy to be explored in COVID-19 patients.

9.
Am J Physiol Lung Cell Mol Physiol ; 321(5): L847-L858, 2021 11 01.
Article in English | MEDLINE | ID: covidwho-1403121

ABSTRACT

Increased blood fibrocytes are associated with a poor prognosis in fibrotic lung diseases. We aimed to determine whether the percentage of circulating fibrocytes could be predictive of severity and prognosis during coronavirus disease 2019 (COVID-19) pneumonia. Blood fibrocytes were quantified by flow cytometry as CD45+/CD15-/CD34+/collagen-1+ cells in patients hospitalized for COVID-19 pneumonia. In a subgroup of patients admitted in an intensive care unit (ICU), fibrocytes were quantified in blood and bronchoalveolar lavage (BAL). Serum amyloid P (SAP), transforming growth factor-ß1 (TGF-ß1), CXCL12, CCL2, and FGF2 concentrations were measured. We included 57 patients in the hospitalized group (median age = 59 yr [23-87]) and 16 individuals as healthy controls. The median percentage of circulating fibrocytes was higher in the patients compared with the controls (3.6% [0.2-9.2] vs. 2.1% [0.9-5.1], P = 0.04). Blood fibrocyte count was lower in the six patients who died compared with the survivors (1.6% [0.2-4.4] vs. 3.7% [0.6-9.2], P = 0.02). Initial fibrocyte count was higher in patients showing a complete lung computed tomography (CT) resolution at 3 mo. Circulating fibrocyte count was decreased in the ICU group (0.8% [0.1-2.0]), whereas BAL fibrocyte count was 6.7% (2.2-15.4). Serum SAP and TGF-ß1 concentrations were increased in hospitalized patients. SAP was also increased in ICU patients. CXCL12 and CCL2 were increased in ICU patients and negatively correlated with circulating fibrocyte count. We conclude that circulating fibrocytes were increased in patients hospitalized for COVID-19 pneumonia, and a lower fibrocyte count was associated with an increased risk of death and a slower resolution of lung CT opacities.


Subject(s)
Antigens, CD/blood , Blood Cells/metabolism , COVID-19/blood , Cytokines/blood , SARS-CoV-2/metabolism , Serum Amyloid A Protein/metabolism , Adult , Aged , Aged, 80 and over , Blood Cell Count , COVID-19/diagnosis , COVID-19/diagnostic imaging , Female , Humans , Male , Middle Aged , Prognosis , Severity of Illness Index , Tomography, X-Ray Computed
10.
Clin Infect Dis ; 72(10): e501-e505, 2021 05 18.
Article in English | MEDLINE | ID: covidwho-1232184

ABSTRACT

BACKGROUND: The bacille Calmette-Guérin (BCG) tuberculosis vaccine has immunity benefits against respiratory infections. Accordingly, it has been hypothesized to have a protective effect against coronavirus disease 2019 (COVID-19). Recent research found that countries with universal BCG childhood vaccination policies tend to be less affected by the COVID-19 pandemic. However, such ecological studies are biased by numerous confounders. Instead, this paper reports on a rare nationwide natural experiment that occurred in Sweden in 1975, where discontinuation of newborns' BCG vaccination led to a dramatic decrease in BCG coverage rate, thus allowing us to estimate BCG's effect without the biases associated with cross-country comparisons. METHODS: Numbers of COVID-19 cases and hospitalizations were recorded for birth cohorts born just before and just after 1975, representing 1 026 304 and 1 018 544 individuals, respectively. We used regression discontinuity to assess the effect of BCG vaccination on COVID-19-related outcomes. On such a large population, this method allows for a precision that would be hard to achieve using a randomized controlled trial. RESULTS: The odds ratios (95% CI) for COVID-19 cases and COVID-19-related hospitalizations were 1.0005 (.8130-1.1881) and 1.2046 (.7532-1.6560), allowing us to reject fairly modest effects of universal BCG vaccination. We can reject with 95% confidence that universal BCG vaccination reduces the number of cases by 19% and the number of hospitalizations by 25%. CONCLUSIONS: While the effect of a recent vaccination must be evaluated, we provide strong evidence that receiving the BCG vaccine at birth does not have a protective effect against COVID-19 among middle-aged individuals.


Subject(s)
BCG Vaccine , COVID-19 , Vaccination , COVID-19/prevention & control , Cohort Studies , Humans , Infant , Infant, Newborn , Middle Aged , Pandemics , SARS-CoV-2 , Sweden/epidemiology
SELECTION OF CITATIONS
SEARCH DETAIL